

"I know what we're going to do today."

<u>Agenda:</u>

- 1) Bell: adding/subtracting activity
- 2) Turn in homework p. 50
- 3) Lesson: multiplying numbers in scientific notation
- 4) Homework: pg 56, PS #4 due tomorrow

Sep 15-10:44 PM

Student Task Sheet

In the powers and roots unit we have been studying, you have learned to convert between standard notation and scientific notation. You have also learned to compare numbers in scientific notation.

In this assignment I am asking you to create a poster to compare a measurement of six different items. You will choose what you are going to compare. You may use either the internet or a book. You must cite the source of your data. Your poster must include a title which clearly states what you are comparing. For each item you must include a picture, label, and proper scientific notation. The items must be placed on your poster from smallest to largest. The poster is due 2

May 31-9:40 AM

You will be graded on:

Completion:

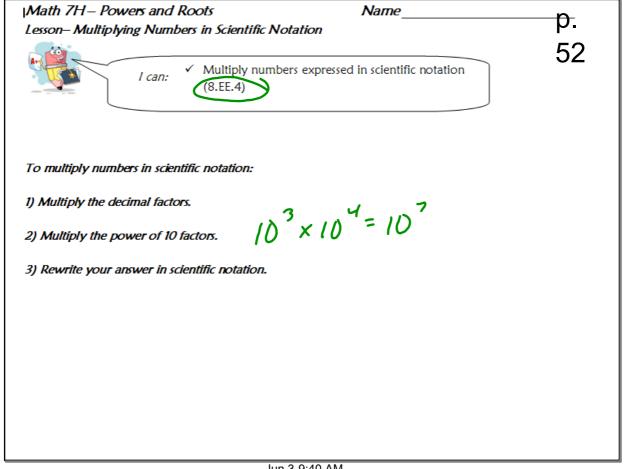
Compare 6 different items

Mathematical Concepts:

- Measurements are in proper scientific notation
- Items are ordered correctly (placed from smallest to largest)

Presentation:

- · Title states what you are comparing (i.e. mass, weight, volume, distance to the sun)
- · Picture of each item
- · Label for each item
- · Source(s) is cited


Timeliness:

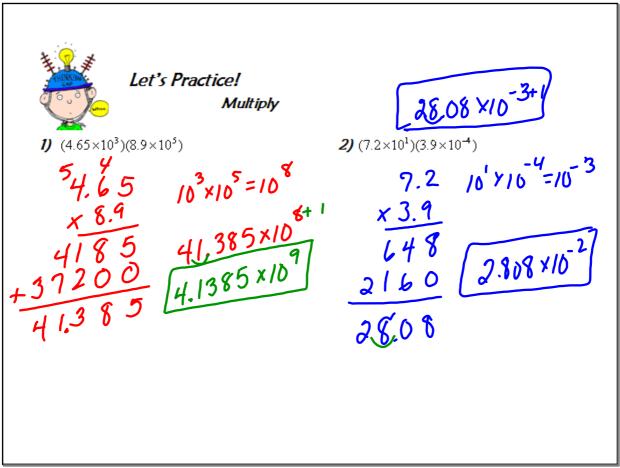
Please refer to the attached rubric as you complete your poster.

module 1 lesson 9 multiplying and dividing scientific notation.notebook October 05, 2017

	Rubric for Scientific Notation Poster Outstanding Acceptable Needs Work		
	10	6	2
Completion	Poster includes	Poster includes	Poster includes
Completion	measurements	measurements	measurements
	for 6 different	for 4-5 different	for 3 or less
	items.	items.	items.
Mathematical	All items are in	Poster contains	Poster contains
Concepts-	proper scientific	1-2 errors,	3 or more
Scientific	notation.	either with	errors, either
Notation		scientific	with scientific
		notation or	notation or
		placement of	placement of
		items.	items.
Mathematical	All items are in	One to two	Three or more
Concepts-	correct order,	errors in	errors in
Comparing	from smallest	ordering data.	ordering data
Numbers in	scientific		
Scientific	notation to		
Notation	largest.		
Presentation	Poster contains		Poster is
	title, pictures	lacking 1-2	lacking 3 or
	and label for all		more elements
	6 items, and	pictures, labels,	(title, pictures,
	source is cited.	or source).	labels, or
T:!	Double a la	Doubles in	source).
Timeliness	Poster is	Poster is	Poster is
	handed in on	handed in 1	handed in more
	time.	class day late.	than 1 class
			day late.

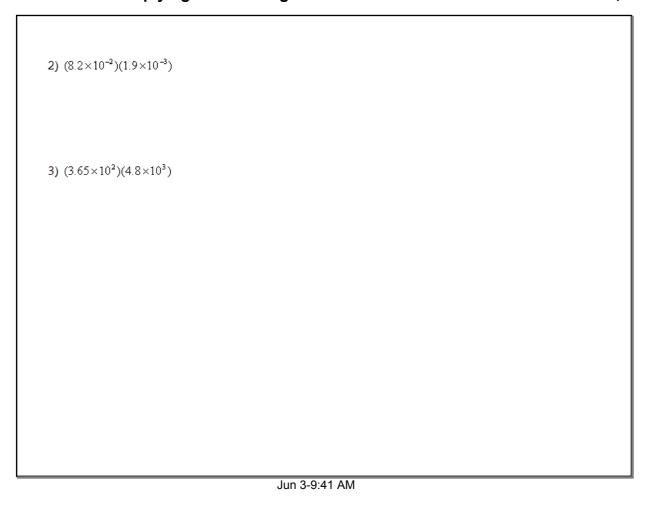
May 31-9:40 AM

Example 1: Multiply
$$(3.4 \times 10^{2})(2.1 \times 10^{3})$$


$$\begin{array}{c}
3.4 & 10.8. \\
\times 2.1 & 10.8.
\end{array}$$

$$\begin{array}{c}
3.4 & 10.8. \\
\times 2.1 & 10.8.
\end{array}$$

$$\begin{array}{c}
7.14 \times 10^{5} \\
7.14 \times 10^{5}
\end{array}$$


Jun 3-9:40 AM

module 1 lesson 9 multiplying and dividing scientific notation.notebook October 05, 2017

Jun 3-9:41 AM

Powers and Roots <u>Homefun</u>	Name	_
Multiply		
1) (4.4×10 ⁴)(2.5×10 ²)		

- 4) In your own words explain how to multiply numbers written in scientific notation?
- 5) What is the usefulness of being able to multiply numbers in scientific notation?

Math	7H_	Powers	and	Roots
/VICILII	,,,,	I OWEIS	ana	NOOL

Name

Lesson – Dividing Numbers in Scientific Notation

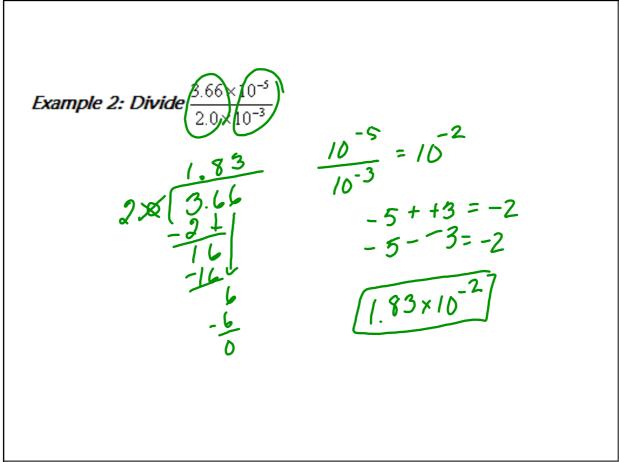
I can:

 ✓ Divide numbers expressed in scientific notation (8.EE.4)

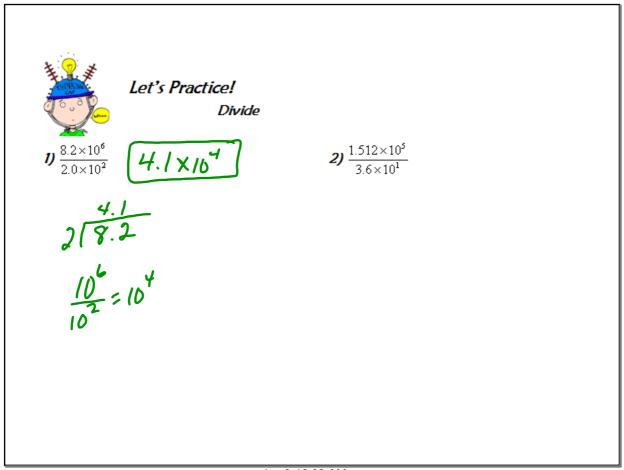
To divide numbers in scientific notation:

- 1) Divide the decimal factors.
- 2) Divide the power of 10 factors. Remember the quotient of powers rule.
- 3) Rewrite your answer in scientific notation.

$$\frac{10^5}{10^3} = 10^2$$


Jun 3-10:03 AM

Example 1: Divide
$$\frac{6.3 \times 10^6}{1.2 \times 10^2}$$


$$\frac{10^6}{10^2} = 10^4$$

$$\frac{5.25}{10^2} = 10^4$$

$$\frac{5.25 \times 10^4}{24}$$

Jun 3-10:03 AM

module 1 lesson 9 multiplying and dividing scientific notation.notebook October 05, 2017

Review 1) (5.4×10 ⁴)(1.5×10 ⁸)		
2) (4.2×10 ⁰)(1.2×10 ⁻³)		
3) (8.65×10 ⁻²)(4.8×10 ³)		

Jun 3-10:03 AM

4) In your own words explain how to divide numbers written in scientific notation?

$$10^{-1} = \frac{1}{10} = .1$$

$$10^{-2} = \frac{1}{10^{2}} = \frac{1}{100} = .01$$

$$10^{-6} = \frac{1}{10^{6}} = \frac{1}{1000000} = .000001$$

$$5^{-3} = (\frac{1}{5^{3}}) = (\frac{1}{125})$$

$$3^{-4} = \frac{1}{3^{4}} = \frac{1}{81}$$

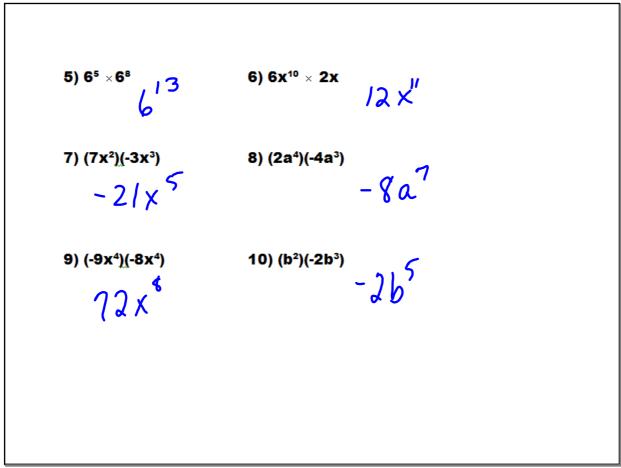
$$3 = (\frac{1}{3}) = \frac{1}{81}$$

May 28-9:56 AM

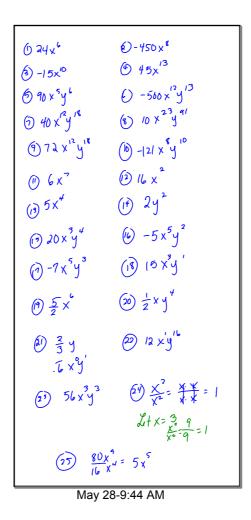
Name: _ Math 7H

• Exponents hw -2

Rule: $a^s \times a^t = a^{s+t}$


This rule says to add the exponents when multiplying two numbers with the same base.

Problems:


Simplify

1)
$$3^2 \times 3^5$$
 2) $-3x^5 \times 4x^6 - 12x^{1/2}$

3)
$$x^{1/4} \times x^{7} + 4 + 4 \times (3x)(2x^{2}) = 6 \times 3$$

May 24-2:26 PM

Name:			onents
Learning Objectiv Students will dev division.		oonents for multiplic	ation and
1. What is an exp			
An expone	nt tells how many t	mes to <u>Mulfi</u>	ply
<u>a</u> number b			

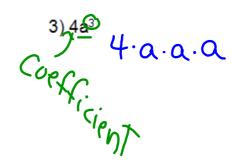
May 23-9:31 AM

Example: 2^4 stands for $2 \times 2 \times 2 \times 2$, or 2 is used as a $\frac{1}{4}$ times.

In the example, 2 is the $\frac{1}{4}$ base, and the number 4 is the $\frac{1}{4}$ standard form, $2^4 = 16$.

Calculator $\frac{1}{4}$

Example: 4^3 stands for 4x4x4=64. 4 is the base and 3 is the exponent.


Practice: Underline each base and circle each exponent.

1) 125

2) x²

4) (-5)⁷

- 5) (3x)4
- 3x.3x.3x.3x

May 23-9:31 AM

Rule 1: $a^s \times a^t = a^{s+t}$

This rule says to _____ the exponents when

multiplying two numbers with the same base.

Why does this work?

To prove this rule, write out $3^3 \times 3^2$ using factors. How many 3s are there? $3 \times 3 \times 3 \times 3 \times 3 = 3$

Examples:

1) Simplify:
$$3^2 \times 3^5 = 3^7$$

2) Simplify:
$$10^5 \times 10^6 = 10^{11}$$

3) Simplify:
$$2x^4 \times 1x^8 = 2x^{12}$$

4) Simplify:
$$(3a^5)(a^2) = 3a^7$$

What did you notice about coefficients?

May 23-9:31 AM

Practice: Simplify each expression below.

$$2) x^2 \cdot x^1 = x^3$$

4)
$$(-3)^2 \times (-3)^2$$

$$(-3)^4$$

Rule 2: When you divide with the same base, **Subtract** the exponents.

Why does this work?

To prove this rule, write out $\frac{4^5}{4^2}$ using factors.

Simplify.

How many 4s are remaining?

4×4×4×4 4×4

May 23-9:32 AM

Examples:

1) Simplify:
$$6^5 \div 6^3 = 6^2 = 36$$

2) Simplify:
$$6x^{10} \div 2x' = 3x^{9}$$

3) Simplify:
$$\frac{16k!}{4k!} = 4$$

What did you notice about coefficients?

Practice: Simplify each expression below.

1)
$$2^5 \div 2^4 = 2 = 2$$
 2) $x^3 \div x^5 = x^{-2}$

2)
$$x^3 + x^5 = x^{-2}$$

$$\frac{3}{7} \frac{14x^2}{7x'} = 2 \times 1$$

$$\frac{4) - 12a^5}{3a^3} = -4 \alpha^2$$

May 23-9:32 AM

More with Exponents

Rule #3: $(6^2)^4 = 6^8$

When you raise an exponent to a power, multiply the exponents.

Examples:

1) Solve for n:
$$(3^4)^3 = 3^n$$

2) Solve:
$$(12^2)^3 = 12^6 = 2985,984$$

2) Solve:
$$(12^{2})^{3} = \frac{12^{6}}{2} = 2,985,984$$

3) Solve: $(2x^{5})^{3} = \frac{2}{3} \times \frac{15}{2} = 8 \times \frac{15}{2}$
 $(2x^{5})(2x^{5})(2x^{5})$

May 23-9:32 AM

Rule #4:
$$a^0 = 1$$

Rule #5: $a^{-s} = \frac{1}{a^{s}}$
 $10^{-2} = \frac{1}{10^2} = \frac{1}{100} = .01$
 $3^{-3} = \frac{1}{3^3} = \frac{1}{27}$

Examples:
1)
$$10^4 = 1000$$
 2) $10^5 = 10^5 = 10000^5$ 3) $10^3 = 1000 = 00$
4) $3^0 = 1$ 5) $6^{-2} = 1000 = 00$
7) $x_{10}^0 = 1$ 8) $3x^0 = 3 \cdot 1 = 3$ 9) $2^{-3} = \frac{1}{2^3} = \frac{1}{8}$

$$5) 6^{-2} = \frac{1}{6^2} = \frac{3}{3}$$

8)
$$3x^0 = 3 \cdot 1 = 3$$

9)
$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

May 23-9:32 AM

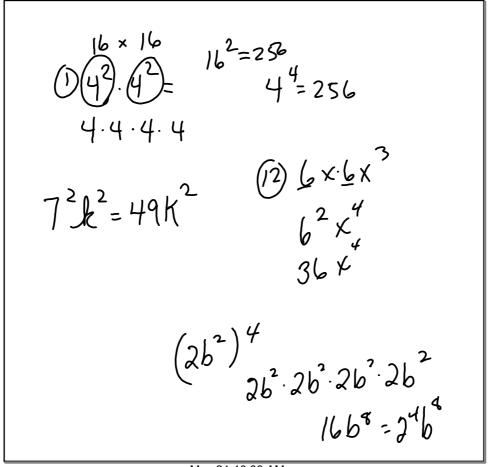
Homework:

Simplify.

1)
$$(7x^2)(-3x^3)$$

- $2/x$

3)
$$\frac{27x^5}{-3x^2} - 9x$$


4)
$$\frac{12x^2}{4x}$$
 $3x$

- 5) (2a⁴)(-4a³) -827
- 6) (-9x⁴)(-8x⁴) 72 x8

- 9) $(b^2)(-2b^3)$ 5 2 6
- 10) $\frac{15x^2}{3x^3}$ $5 \times \frac{5}{x}$

May 23-10:16 AM

$$7.10.8 = 560$$

 $\sqrt{3}. \sqrt{5}. \sqrt{3} = \sqrt{1}$
 $\sqrt{3}. \sqrt{5}. \sqrt{4}$

May 24-10:03 AM

Scientific Notation

<u>Scientific Notation</u>: product of a number from 1 to 10 and a power of ten.

Standard Form: Scientific Notation

1. 32,000 3.2 X 10⁴

module 1 lesson 9 multiplying and dividing scientific notation.notebook October 05, 2017

3. 7,600	7.6 X 10 ³
40064	6.4 X 10 ⁻³
5	3.5 X 10 ⁻²
6. 647,500	
7000465	
8) 6,425,000	
9)	3.4 X 10 ⁶
10)	1.256 X 10 ⁻¹

May 23-9:33 AM